全国卷密集出现构造函数比较大小

本文最后更新于:2024年9月16日 下午

2022新高考全国1卷

7.设\(a=0.1e^{0.1},b=\dfrac{1}{9},c=-\ln0.9\),则

\(A.a<b<c\qquad\) \(B.c<b<a\qquad\) \(C.c<a<b\qquad\) \(D.a<c<b\)

从所给数据来看,可以将三个数处理为对\(0.1\)的运算:\(a=0.1e^{0.1},b=\dfrac{0.1}{1-0.1},c=\ln\dfrac{1}{1-0.1}\)

因此可以构造\(f(x)=xe^x\)\(g(x)=\dfrac{x}{1-x}\),\(h(x)=\ln\dfrac{1}{1-x}\)

\(\ln x\le x-1\)得,\(\ln\dfrac{1}{1-x}\le\dfrac{1}{1-x}-1=\dfrac{x}{1-x}\),于是\(b<c\)

\(e^x\ge x+1\)得,\(e^{-x}\ge 1-x\),即\(e^x\le\dfrac{1}{1-x}(x<1)\),即\(xe^x\le\dfrac{x}{1-x}\),于是\(a<b\)

对于\(a,c\)的比较,构造\(\varphi(x)=xe^x+\ln(1-x)\),则\(\varphi'(x)=(x+1)e^x+\dfrac{1}{x-1}=\dfrac{(x^2-1)e^x+1}{x-1}\)

\(m(x)=(x^2-1)e^x+1\),则\(m'(x)=(x^2+2x-1)e^x\),\(x\in(0,0.1)\)时,\(m'(x)<0\),于是\(m(x)\)在\((0,0.1)\)单减,则\(m(x)<m(0)=0\),于是\(\varphi'(x)>0\),即\(\varphi(x)\)在\((0,0.1)\)单增,则\(\varphi(x)>\varphi(0)=0\),于是\(a>c\)

2022新课标2卷12题:

12.已知\(a=\dfrac{31}{32}\)\(b=\cos\dfrac{1}{4}\),\(c=4\sin\dfrac{1}{4}\),则

\(A.c>b>a\qquad\) \(B.b>a>c\qquad\) \(C.a>b>c\qquad\) \(D.a>c>b\)

解析:

\(b-c=\cos\dfrac{1}{4}-4\sin\dfrac{1}{4}=4(\dfrac{1}{4}\cos\dfrac{1}{4}-\sin\dfrac{1}{4})\),构造\(f(x)=x\cos x-\sin x\),则\(f'(x)=-x\sin x\),则\(f(x)\)在\((0,\dfrac{1}{4})\)单减,于是\(f(x)<f(0)=0\),即\(b<c\)

\(a=1-\dfrac{1}{2}\cdot(\dfrac{1}{4})^2\),构造\(g(x)=1-\dfrac{1}{2}x^2-\cos x\),则\(g'(x)=-x+\sin x\),\(g''(x)=-1+\cos x\le0\),于是在\((0,+\infty)\)上\(g'(x)\)单减,则\(g'(x)<g'(0)=0\),于是\(g(x)\)在\((0,+\infty)\)单减,则\(g(x)<g(0)=0\),即\(a<b\)

2021新课标1卷12题

12.设\(a=2\ln1.01\)\(b=\ln1.02\),\(c=\sqrt{1.04}-1\),则( )

\(A.a<b<c\qquad\) \(B.b<c<a\qquad\) \(C.b<a<c\qquad\) \(D.c<a<b\)

解:\(a=\ln1.0201>b\),比较\(b\)和\(c\),注意到\(1.04=1.02\times2-1\),构造\(f(x)=\ln x-\sqrt{2x-1}+1\)

\(f'(x)=\dfrac{\sqrt{2x-1}-x}{x\sqrt{2x-1}}\le0\),则\(f(x)\)在\([1,+\infty)\)单减,于是\(f(1.02)<f(1)=0\),即\(b<c\)

比较\(a\)\(c\),构造\(g(x)=2\ln x-\sqrt{4x-3}+1\),\(g'(x)=\dfrac{2(\sqrt{4x-3}-x)}{x\sqrt{4x-3}}\)

\(g'(x)>0\)\(x\in(1,3)\),于是\(g(x)\)在\((1,3)\)单增,则\(g(1.01)>g(1)=0\),即\(a>c\)


全国卷密集出现构造函数比较大小
https://andyppang.github.io/2022/06/09/全国卷密集出现构造函数比较大小/
作者
PL
发布于
2022年6月9日
许可协议