2021全国乙卷第12,20,21题解
本文最后更新于:2024年9月16日 下午
2021全国乙卷
12.设\(a=2\ln1.01\),\(b=\ln1.02\),\(c=\sqrt{1.04}-1\),则( )
\(A.a<b<c\qquad\) \(B.b<c<a\qquad\) \(C.b<a<c\qquad\) \(D.c<a<b\)
解:\(a=\ln1.0201>b\),比较\(b\)和\(c\),注意到\(1.04=1.02\times2-1\),构造\(f(x)=\ln x-\sqrt{2x-1}+1\)
\(f'(x)=\dfrac{\sqrt{2x-1}-x}{x\sqrt{2x-1}}\le0\),则\(f(x)\)在\([1,+\infty)\)单减,于是\(f(1.02)<f(1)=0\),即\(b<c\)
比较\(a\)和\(c\),构造\(g(x)=2\ln x-\sqrt{4x-3}+1\),\(g'(x)=\dfrac{2(\sqrt{4x-3}-x)}{x\sqrt{4x-3}}\)
令\(g'(x)>0\)得\(x\in(1,3)\),于是\(g(x)\)在\((1,3)\)单增,则\(g(1.01)>g(1)=0\),即\(a>c\)
20.设函数\(f(x)=\ln(a-x)\),已知\(x=0\)是函数\(y=xf(x)\)的极值点.
(1)求\(a\);
(2)设函数\(g(x)=\dfrac{x+f(x)}{xf(x)}\),证明\(g(x)<1\)
解:(1)\(a=1\)
(2)\(g(x)\)的定义域是\((-\infty,0)\cup (0,1)\),即证\(\dfrac{x+\ln(1-x)}{x\ln(1-x)}<1\),注意到\(x\ln(1-x)<0\)
即证\(x+(1-x)\ln(1-x)>0\),即证\(h(x)=\dfrac{x}{1-x}+\ln(1-x)>0\)
\(h'(x)=\dfrac{x}{(1-x)^2}\),则\(h(x)\)在\((-\infty,0)\)单减,\((0,1)\)单增,而\(h(0)=0\)
则当\(x\in(-\infty,0)\cup(0,1)\)时,\(h(x)>0\),得证
21.已知抛物线\(C:x^2=2py(p>0)\)的焦点为\(F\),且\(F\)与圆\(M:x^2+(y+4)^2=1\)上点的距离的最小值为4
(1)求\(p\);
(2)若点\(P\)在\(M\)上,\(PA,PB\)是\(C\)的两条切线,\(A,B\)是切点,求\(\triangle PAB\)面积的最大值.
解:(1)\(p=2\)
(2)设\(A(x_1,\dfrac{1}{4}x_1^2),B(x_2,\dfrac{1}{4}x_2^2)\),过\(A\)的切线\(l_1:y=\dfrac{1}{2}x_1x-\dfrac{1}{4}x_1^2\)
同理过\(B\)的切线\(l_2:y=\dfrac{1}{2}x_2x-\dfrac{1}{4}x_2^2\),联立求得\(P(\dfrac{x_1+x_2}{2},\dfrac{1}{4}x_1x_2)\)
又过\(A\)B的直线方程为\(y=\dfrac{\frac{1}{4}x_2^2-\frac{1}{4}x_1^2}{x_2-x_1}(x-x_1)+\dfrac{1}{4}x_1^2\),即\(y=\dfrac{1}{4}(x_1+x_2)x-\dfrac{1}{4}x_1x_2\)
则\(AB\)中点为\(M(\dfrac{x_1+x_2}{2},\dfrac{x_1^2+x_2^2}{8})\),连接\(PM\),则
\(S_{\triangle PAB}=\dfrac{1}{2}|PM|\cdot|x_2-x_1|=\dfrac{(x_2-x_1)^3}{16}\)
记\(P(\dfrac{x_1+x_2}{2},\dfrac{1}{4}x_1x_2)=(x_0,y_0)\),则\((x_2-x_1)^2=(x_1+x_2)^2-4x_1x_2=4x_0^2-16y_0\)
由于\(x_0^2+(y_0+4)^2=1\),则\(4x_0^2-16y_0=-4y_0^2-48y_0-60\)
于是\(S_{\triangle PAB}=\dfrac{(x_2-x_1)^3}{16}=\dfrac{(-4y_0^2-48y_0-60)^\frac{3}{2}}{16},y_0\in[-5,-3]\)
则当\(y_0=-5\)时,\(S_{\triangle PAB}\)的最大值为\(20\sqrt5\)