2021新高考1卷部分试题解析
本文最后更新于:2024年9月16日 下午
2021新高考全国1卷
8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
\(A.\)甲与丙相互独立 \(B.\)甲与丁相互独立 \(C.\)乙与丙相互独立 \(D.\)丙与丁相互独立
解:甲与丙是互斥事件,故不相互独立;\(P\)(丁|甲)=\(P\)(丁)=\(\dfrac{1}{6}\),故甲与丁相互独立
\(P\)(丙)=\(\dfrac{5}{36}\),\(P\)(丙|乙)=\(\dfrac{1}{6}\),故乙与丙不相互独立;丙与丁是互斥事件,故丙与丁不相互独立
12.在正三棱柱\(ABC-A_1B_1C_1\)中,\(AB=AA_1=1\),点\(P\)满足\(\overrightarrow{BP}=\lambda\overrightarrow{BC}+\mu\overrightarrow{BB_1}\),其中\(\lambda\in[0,1],\mu\in[0,1]\),则( )
\(A.\)当\(\lambda=1\)时,\(\triangle AB_1P\)的周长为定值
\(B.\)当\(\mu=1\)时,三棱锥\(P-A_1BC\)的体积为定值
\(C.\)当\(\lambda=\dfrac{1}{2}\)时,有且仅有一个点\(P\),使得\(A_1P\bot BP\)
\(D.\)当\(\mu=\dfrac{1}{2}\)时,有且仅有一个点\(P\),使得$A_1B\(平面\)AB_1P$
解:对于\(A\),点\(P\)在线段\(CC_1\)上,当\(P\)位于\(CC_1\)的中点时,\(AP+B_1P\)最短,故\(\triangle AB_1P\)的周长不是定值,\(A\)错
对于\(B\),点\(P\)在线段\(B_1C_1\)上,由于\(B_1C_1//\)平面\(A_1BC\),则\(B_1C_1\)上任意一点到平面的距离都相等,故\(B\)对
对于\(C\),点\(P\)在线段\(P_1P_2\)上,当\(P\)在\(P_1\)或\(P_2\)上时,都有\(A_1P\bot BP\),\(C\)错,多选题故\(D\)正确
对于\(D\),需满足\(A_1B\bot PO\),由于\(O\)为\(A_1B\)的中点,即需有\(PB=PA_1\),则\(P\)在线段\(A_1B\)的中垂面上,而中垂面与\(P\)所在的线段交点唯一,即\(CC_1\)的中点
16.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm \(\times\) 12dm的长方形纸,对折1次共可以得到10dm \(\times\) 12dm,20dm \(\times\) 6dm两种规格的图形,它们的面积之和为 \(S_1=240dm^2\),对折2次共可以得到5dm \(\times\) 12dm,10dm \(\times\) 6dm,20dm \(\times\) 3dm三种规格的图形,它们的面积之和\(S_2=180dm^2\),以此类推,则对折4次共可以得到不同规格图形的种数为_________; 如果对折\(n\)次,那么\(\sum _{k=1}^n S_k=\) ____________\(dm^2\)
解:考察数列错位相减法求和略,5,\(720-240\cdot\dfrac{n+3}{2^n}\)
19.记\(\triangle ABC\)的内角\(A,B,C\)的对边分别为\(a,b,c\).已知\(b^2=ac\),点\(D\)在边\(AC\)上,\(BD\sin\angle ABC=a\sin C\).
(1)证明:\(BD=b\);
(2)若\(AD=2DC\),求\(\cos\angle ABC\).
解:(2)由\(\cos\angle ADB+\cos\angle CDB=0\),即\(\dfrac{\dfrac{4}{9}b^2+b^2-c^2}{2\times\dfrac{2}{3}b^2}+\dfrac{b^2+\dfrac{1}{9}b^2-a^2}{2\times\dfrac{1}{3}b^2}=0\),
化简得\(3c^2-11ac+6a^2=0\),即\(c=3a\)或\(c=\dfrac{2}{3}a\)
若\(c=3a\),则\(b=\sqrt3a\),此时\(a+b<c\),不能构成三角i形,舍
故\(c=\dfrac{2}{3}a\),此时\(\cos \angle ABC=\dfrac{a^2+c^2-ac}{2ac}=\dfrac{7}{12}\)
21.在平面直角坐标系\(xOy\)中,已知点\(F_1(-\sqrt{17},0),F_2(\sqrt{17},0)\),点\(M\)满足\(|MF_1|-|MF_2|=2\).记\(M\)的轨迹为\(C\).
(1)求\(C\)的方程
(2)设点\(T\)在直线\(x=\dfrac{1}{2}\)上,过\(T\)的两条直线分别交\(C\)于\(A,B\)两点和\(P,Q\)两点,且\(|TA|\cdot|TB|=|TP|\cdot|TQ|\),求直线\(AB\)的斜率与直线\(PQ\)的斜率之和.
解:(1)\(C:x^2-\dfrac{y^2}{16}=1(x\ge1)\)
(2)方法一:设\(T(\dfrac{1}{2},n)\),\(AB:y=k_1x+m_1\),\(PQ:y=k_2x+m_2\),将\(AB\)与\(C\)联立得
\((16-k_1^2)x^2-2k_1m_1x-m_1^2-16=0\),设方程的两根为\(x_1,x_2\)
则\((16-k_1^2)x^2-2k_1m_1x-m_1^2-16=(16-k_1^2)(x-x_1)(x-x_2)\),令\(x=\dfrac{1}{2}\)得
\((\dfrac{1}{2}-x_1)(\dfrac{1}{2}-x_2)=\dfrac{\dfrac{1}{4}(16-k_1^2)-k_1m-m_1^2-16}{16-k_1^2}=\dfrac{-12-(\dfrac{1}{2}k_1+m_1)^2}{16-k_1^2}=\dfrac{n^2+12}{k_1^2-16}\)
于是\(|TA|\cdot|TB|=(1+k_1^2)\dfrac{n^2+12}{k_1^2-16}\),同理\(|TP|\cdot|TQ|=(1+k_2^2)\dfrac{n^2+12}{k_2^2-16}\)
故\(\dfrac{1+k_1^2}{k_1^2-16}=\dfrac{1+k_2^2}{k_2^2-16}\),即\(1+\dfrac{17}{k_1^2-16}=1+\dfrac{17}{k_2^2-16}\),
故\(k_1^2=k_2^2\),由于\(k_1\ne k_2\),则\(k_1=-k_2\),即\(k_1+k_2=0\)
方法二:设\(T(\dfrac{1}{2},n)\),直线\(AB\)的参数方程为\(\begin{cases} x=\dfrac{1}{2}+t\cos\alpha\ \\ y=n+t\sin\alpha \end{cases},t\)为参数,与\(C\)联立得
\((16\cos^2\alpha-\sin^2\alpha)t^2+(16\cos\alpha-2n\sin\alpha)t-12-n^2=0\)
于是\(|TA|\cdot|TB|=t_1t_2=\dfrac{-n^2-12}{16\cos^2\alpha-\sin^2\alpha}=\dfrac{-n^2-12}{17\cos^2\alpha-1}\)
设直线\(PQ\)的参数方程为\(\begin{cases} x=\dfrac{1}{2}+t\cos\beta\ \\ y=n+t\sin\beta \end{cases},t\)为参数
同理\(|TP|\cdot|TQ|=\dfrac{-n^2-12}{16\cos^2\beta-\sin^2\beta}=\dfrac{-n^2-12}{17\cos^2\beta-1}\)
于是\(\cos^2\alpha=\cos^2\beta\),由于\(\alpha\ne\beta\),则\(\alpha+\beta=\pi\),即\(AB\)与\(PQ\)的斜率之和为0
老教材《坐标系与参数方程》选修教材的例题(原例题是椭圆),出现在新高考挺尬的
22.已知函数\(f(x)=x(1-\ln x)\)
(1)讨论\(f(x)\)的单调性;
(2)设\(a,b\)为两个不相等的正数,且\(b\ln a-a\ln b=a-b\),证明:\(2<\dfrac{1}{a}+\dfrac{1}{b}<e\)
解:(1)\(f'(x)=-\ln x\),则\(f(x)\)在\((0,1)\)单增,\((1,+\infty)\)单减
(2)\(b\ln a-a\ln b=a-b\)即\(\dfrac{1}{a}(1-\ln\dfrac{1}{a})=\dfrac{1}{b}(1-\ln\dfrac{1}{b})\),令\(x_1=\dfrac{1}{a},x_2=\dfrac{1}{b}\)
即\(f(x_1)=f(x_2)\),\(x_1\ne x_2\),证明:\(2<x_1+x_2<e\)
左侧证明为标准的极值点偏移问题,略,下证明右边
方法一:仿照极值点偏移的求解,统一变量构造函数
易知\(0<x_1<1<x_2<e\),只需证\(x_2<e-x_1\),只需证\(f(x_2)>f(e-x_1)\),即证\(f(x_1)>f(e-x_1)\)
令\(g(x)=f(x)-f(e-x)=x(1-\ln x)-(e-x)(1-\ln(e-x))=2x-x\ln x+(e-x)\ln(e-x)-e,x\in(0,1)\)
则\(g'(x)=-\ln(ex-x^2)\),记\(x_0\)为\(ex-x^2=1\)的小于1的根,则\(g(x)\)在\((0,x_0)\)单增,\((x_0,\dfrac{e}{2})\)单减
又\(x\rightarrow 0\)时,\(g(x)\rightarrow 0\),结合\(g(x)>g(\dfrac{e}{2})=0\)知,\(g(x)>0,x\in(0,1)\)成立
如果想避免上述极限的写法,考虑对\(g(x)\)的解析式进行变形,令\(h(x)=2-\ln x+\dfrac{e-x}{x}\ln(e-x)-\dfrac{e}{x}\)
\(h'(x)=-\dfrac{1}{x^2}[e\ln(e-x)+2x-e]\),令\(\varphi(x)=e\ln(e-x)+2x-e\),注意\(\varphi(0)=0\)
\(\varphi'(x)=\dfrac{2x-e}{x-e}\),当\(x\in(0,\dfrac{e}{2})\)时,\(\varphi'(x)>0\),则\(\varphi(x)>0\),即\(h'(x)<0\),故\(h(x)\)在\((0,\dfrac{e}{2})\)单减,则\(h(x)>h(\dfrac{e}{2})=0\)
方法二:比值换元,统一变量
令\(x_2=tx_1\),即有\(\begin{cases}x_1(1-\ln x_1)=x_2(1-\ln x_2)\\ x_2=tx_1 \end{cases}\),解得\(\ln x_1=1-\dfrac{t\ln t}{t-1}\)
\(x_1+x_2<e\),即证\((1+t)x_1<e\),即证\(\ln(1+t)+\ln x_1<1\),即证\(\ln(1+t)-\dfrac{t\ln t}{t-1}<0\),即证\(\dfrac{\ln(t+1)}{t}<\dfrac{\ln t}{t-1}\),
令\(g(t)=\dfrac{\ln t}{t-1}(t>1)\),则\(g'(t)=\dfrac{t-1-t\ln t}{t(t-1)}<0\),于是\(g(t)\)在\((1,+\infty)\)单减,则\(g(t+1)<g(t)\),得证
方法三:切线放缩
\(f(x)\)在\(x=e\)处的切线方程为\(y=-x+e\),
令\(g(x)=x(1-\ln x)+x-e=2x-x\ln x-e\),\(g'(x)=1-\ln x\),于是\(g(x)\)在\((0,e)\)单增,\((e,+\infty)\)单减,即\(g(x)\le g(e)=0\)
设\(x_1(1-\ln x_1)=x_2(1-\ln x_2)=-x_2'+e\),由于\(x_2(1-\ln x_2)<-x_2+e\),则\(x_2<x_2'\)
于是\(x_1+x_2<x_1+x_2'=x_1+[e-x_1(1-\ln x_1)]=e+x_1\ln x_1<e\)成立
方法四:割线放缩
\(f(x)\)经过\((0,0)\)和\((1,1)\)两点的割线方程为\(y=x\)
显然当\(x\in(0,1)\)时,\(x(1-\ln x)>x\)
设\(x_1(1-\ln x_1)=x_1'=x_2(1-\ln x_2)\),由于\(x_1(1-\ln x_1)>x_1\),则\(x_1'>x_1\)
于是\(x_1+x_2<x_1'+x_2=x_2(1-\ln x_2)+x_2=2x_2-x_2\ln x_2\)
令\(g(x)=2x-x\ln x,x\in(1,e)\),则\(g'(x)=1-\ln x\),于是\(g(x)\)在\((1,e)\)单增
则\(g(x)<g(e)=e\),即\(2x_2-x_2\ln x_2<e\),得证
将法二和法三综合起来,切割线一起放缩:\(x_1+x_2<x_1'+x_2'=e\)
事实上相当于用对称轴为\(x=\dfrac{e}{2}\)的函数\(y=\dfrac{e}{2}-|x-\dfrac{e}{2}|\)拟合了\(f(x)\),体现化曲为直的思想
娱乐一下:当然也可以考虑用对称轴为\(x=\dfrac{e}{2}\)的二次函数拟合,利用待定系数得\(y=\dfrac{1}{1-e}(x-\dfrac{e}{2})^2+\dfrac{e^2}{4(e-1)}\)
方法五:野猪wj
\(b\ln a-a\ln b=a-b\)即\(\dfrac{1}{a}(1+\ln a)=\dfrac{1}{b}(1+\ln b)\),即\(\dfrac{1}{a}\ln ea=\dfrac{1}{b}\ln eb\),即\(\dfrac{1}{ea}\ln \dfrac{1}{ea}=\dfrac{1}{eb}\ln \dfrac{1}{eb}\)
令\(\dfrac{1}{ea}=x_1,\dfrac{1}{eb}=x_2\),\(g(x)=x\ln x\),即\(g(x_1)=g(x_2)\),证明:\(\dfrac{2}{e}<x_1+x_2<1\)
这样同构的式子变化,使得函数解析式变得更加漂亮,下面证明类似略