本文最后更新于:2024年9月16日 下午
庆祝剑群周题100期导数100-1已知函数\(f(x)=(2+x+ax^2)\ln(1+x)-2x\)
(1)若\(a=0\),证明:当\(-1<x<0\)时,\(f(x)<0\);当\(x>0\)时,\(f(x)>0\)
(2)若\(x=0\)是\(f(x)\)的极大值点,求\(a\)的值
(1)证明:\(f(x)=(2+x)\ln(1+x)-2x\),令\(g(x)=\ln(1+x)-\dfrac{2x}{2+x}\)
则\(g'(x)=\dfrac{x^2}{(x+1)(x+2)}\ge0\),于是\(g(x)\)在\((-1,+\infty)\)单增,又\(g(0)=0\),
则当\(-1<x<0\)时,\(f(x)=(2+x)g(x)<0\);当\(x>0\)时,\(f(x)=(2+x)g(x)>0\)
(2)\(f'(x)=(2ax+1)\ln(x+1)+\dfrac{ax^2-x}{x+1},f'(0)=0\)
\(f''(x)=2a\ln(x+1)+\dfrac{3ax^2+(4a+1)x}{(x+1)^2},f''(0)=0\)
\(f'''(x)=\dfrac{2ax^2+(6a-1)x+6a+1}{(x+1)^3},f'''(0)=6a+1\)
情形一:\(a\ge0\)时
\(\forall x\ge0\),\(f''(x)\ge0\),则\(f'(x)\)在\([0,+\infty)\)单增,于是\(f'(x)\ge0\),则\(f(x)\)在\([0,+\infty)\)单增,则\(x=0\)不是极大值点
情形二:\(a<0\)时
记\(h(x)=2ax^2+(6a-1)x+6a+1\),对称轴\(x=-\dfrac{3}{2}+\dfrac{1}{4a}<-1\),分以下四种i情况讨论:
①若\(h(0)=6a+1=0\),即\(a=-\dfrac{1}{6}\)时,\(x\in(-1,0)\)时,\(h(x)>0\),即\(f'''(x)>0\),则\(f''(x)\)单增,\(f''(x)<0\),于是 \(f'(x)\)单减,\(f'(x)>0\),则\(f(x)\)在\((-1,0)\)单增;\(x\in(0,+\infty)\)时,\(h(x)<0\),即\(f'''(x)<0\),同理可得\(f(x)\)在\((0,1)\)单减,于是\(x=0\)是\(f(x)\)的极大值点
②若\(h(0)=6a+1>0\),即\(-\dfrac{1}{6}<a<0\)时,\(\exists x_0\in(0,+\infty)\)使得\(h(x_0)=0\),则\(x\in(0,x_0)\)时,\(h(x)>0\),即\(f'''(x)>0\),于是\(f''(x)\)单增,则\(f''(x)>0\),于是\(f'(x)\)单增,则\(f'(x)>0\),则\(f(x)\)在\((0,x_0)\)单增,则\(x=0\)不是极大值点
③若\(h(0)=6a+1<0\)且\(h(-1)=2a+2>0\),即\(-1<a<-\dfrac{1}{6}\)时,\(\exists x_1\in(-1,0)\)使得\(h(x_1)=0\),则\(x\in(x_1,0)\)时,\(h(x)<0\),即\(f'''(x)<0\),与②同理可得\(f(x)\)在\((x_1,0)\)单减,则\(x=0\)不是极大值点
④若\(h(-1)=2a+2\le0\),即\(a\le-1\)时,\(x\in(-1,0)\)时,\(h(x)<0\),即\(f'''(x)<0\),同③可得\(f(x)\)在\((-1,0)\)单减,则\(x=0\)不是极大值点
综上,\(a=-\dfrac{1}{6}\)
pl
庆祝剑群周题100期导数100-2已知函数\(f(x)=\ln x+ax^2+(2a+1)x\)
(1)讨论\(f(x)\)的单调性;(2)当\(a<0\)时,证明:\(f(x)\le-\dfrac{3}{4a}-2\)
(1)解:\(f'(x)=\dfrac{2ax^2+(2a+1)x+1}{x},x>0\)
当\(a\ge0\)时,\(f'(x)>0\),则\(f(x)\)在\((0,+\infty)\)单增;
当\(a<0\)时,\(f(x)\)在\((0,-\dfrac{1}{2a})\)单增,\((-\dfrac{1}{2a},+\infty)\)单减
(2)由(1)知\(f(x)_{\max}=f(-\dfrac{1}{2a})=\ln(-\dfrac{1}{2a})-\dfrac{1}{4a}-1\)
则\(\ln(-\dfrac{1}{2a})-\dfrac{1}{4a}-1\le-\dfrac{3}{4a}-2\)等价于\(\ln(-\dfrac{1}{2a})\le-\dfrac{1}{2a}-1\),易证\(\ln x\le x-1\),略
pl
庆祝剑群周题100期导数100-3记\(f'(x),g'(x)\)分别是函数\(f(x),g(x)\)的导函数.若存在\(x_0\in\mathbb{R}\),满足\(f(x_0)=g(x_0)\)且\(f'(x_0)=g'(x_0)\),则称\(x_0\)为函数\(f(x)\)与\(g(x)\)的一个“\(S\)点”
(1)证明:函数\(f(x)=x\)与\(g(x)=x^2+2x-2\)不存在“\(S\)点”;
(2)若函数\(f(x)=ax^2-1\)与\(g(x)=\ln x\)存在“\(S\)点”,求实数\(a\)的值;
(3)已知函数\(f(x)=-x^2+a\),\(g(x)=\dfrac{be^x}{x}\),对任意\(a>0\),判断是否存在\(b>0\),使函数\(f(x)\)与\(g(x)\)在区间\((0,+\infty)\)内存在“\(S\)点”,并说明理由
(1)证明:\(\begin{cases}x^2+2x-2=x\\2x+2=1 \end{cases}\)方程组无解,即不存在“\(S\)点”
(2)解:\(\begin{cases}ax^2-1=\ln x\\2ax=\dfrac{1}{x} \end{cases}\),解得\(\begin{cases}a=\dfrac{e}{2}\\x=\dfrac{\sqrt{e}}{e} \end{cases}\)
(3)解:考虑\(\begin{cases}-x^2+a=\dfrac{be^x}{x} \quad①\\-2x=\dfrac{be^x(x-1)}{x^2}\quad② \end{cases}\)若有解,由②知\(x\in(0,1)\),消去\(b\)化简得\(h(x)=x^3-3x^2-ax+a=0\),
对任意\(a>0\),\(h(0)=a>0,h(1)=-2<0\),于是\(h(x)\)在\((0,1)\)一定存在零点\(x_0\)
即对任意\(a>0\),存在\(b=\dfrac{2x_0^3}{e^{x_0}(1-x_0)}\)满足条件
pl